Hydride addition to and reduction of $\mathrm{Cp}{ }^{\star} \operatorname{Ir}\left(\eta^{6}-\mathrm{BT}\right)^{2+}$ and $\mathrm{Cp}{ }^{\star} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}$, where $\mathrm{BT}=$ benzo $[b]$ thiophene and DBT $=$ dibenzothiophene *

Jiabi Chen, Yingzhong Su, Robert A. Jacobson and Robert J. Angelici
Department of chemistry and Ames Laboratory, Iowa State University, Ames, LA 50011 (USA)

(Received October 18, 1991)

Abstract

\section*{Abstract}

The benzo[b]thiophene (BT) complexes $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{BTs}\right)^{2+}$, where BTs is BT (1a), 2-MeBT (1b), 3-MeBT (1c) or 2,3-Me $\mathrm{Me}_{2} \mathrm{BT}$ (1d), react with $\mathrm{H}_{2} \mathrm{Al}_{\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}^{-} \text {to add two } \mathrm{H}^{-} \text {to the coordi- }}$ nated arene ring of the BTs to give the cyclohexadiene complexes $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{BTs} \cdot 2 \mathrm{H}\right), 2 \mathrm{a}-\mathrm{d}$. The

dibenzothiophene complex $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}$ (3) reacts similarly to give $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{DBT} \cdot 2 \mathrm{H}\right)$ (4). Both of these reactions can be reversed by adding $\mathrm{Ph}_{3} \mathrm{C}^{+}$. Two-electron reductions of 1 c and 3 give the η^{4}-arene complexes $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-3-\mathrm{MeBT}\right)$ (5) and $\mathrm{Cp}{ }^{*} \operatorname{II}\left(\eta^{4}-\mathrm{DBT}\right)$ (6). Compounds 2 c and 4 have been characterized by X-ray diffraction.

Introduction

Of the many areas of research pursued by Professor Beck, one that has been of special interest to our group is nucleophilic attack on coordinated ligands. A few of his recent papers described azide ion (N_{3}^{-}) attack on CO ligands [1], and metal carbonyl anion ($\mathrm{M}(\mathrm{CO})_{x}^{-}$) attack on coordinated acetylenes [2] and on π-hydro-

[^0]

carbon ligands [3,4]. In the past few years, we have examined reactions of π-thiophenes with nucleophiles in connection with our investigations of the mechanism of the hydrodesulfurization (HDS) of thiophenes [5,6].

In this paper, we describe reactions of π-complexes of benzo[b]thiophene (BT) and dibenzothiophene (DBT). Previously, we reported [7] the reaction (eq. 1) of $\mathrm{CpRu}\left(\eta^{6}-\mathrm{BT}\right)^{+}$with the hydride source $\mathrm{BEt}_{3} \mathrm{H}^{-}$to give $\mathrm{CpRu}\left(\eta^{5}-\mathrm{BT} \cdot \mathrm{H}\right)$ which is formed as a mixture of four isomeric cyclohexadienyl complexes; the major isomer (A in ref. 7) is shown in eq. 1 . Similarly, $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{BT}\right)^{2+}\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ reacts (eq. 2) with BH_{4}^{-}to give an inseparable mixture of four isomers of $\mathrm{Cp}{ }^{\star} \operatorname{Ir}\left(\eta^{5}-\mathrm{BT} \cdot\right.$ $\mathrm{H})^{+}$[7] This mixture reacts further with the more reactive hydride source $\mathrm{H}_{2} \mathrm{Al}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}^{-}$to give an incompletely characterized mixture of isomers of the formula $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{BT} \cdot 2 \mathrm{H}\right)$ [7]. In the present paper, we describe the synthesis and establish the structure of one isomer of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{BT} \cdot 2 \mathrm{H}\right)$, as well as the analogs containing the 2-, 3-, and 2,3-methyl-substituted benzo[b]thiophenes 2-MeBT, 3-MeBT, and 2,3-Me ${ }_{2}$ BT.

Previously, we had also examined [8] the reaction (eq. 3) of the dibenzothiophene complex $\mathrm{CpRu}\left(\eta^{6}-\mathrm{DBT}\right)^{+}$with $\mathrm{BEt}_{3} \mathrm{H}^{-}$; this gave a mixture of two cyclohexadienyl isomers of $\mathrm{CpRu}\left(\eta^{5}-\mathrm{DBT} \cdot \mathrm{H}\right)$. Herein, we report the addition of two hydrides to $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}$ and structurally characterize the one isolated isomer of $\mathrm{Cp}^{\star} \operatorname{Ir}\left(\eta^{4}-\mathrm{DBT} \cdot 2 \mathrm{H}\right)$.

Finally, we describe the simple two-electron reductions of $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{6}-3-\mathrm{MeBT}\right)^{2+}$ and $\mathrm{Cp}^{\star} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}$ to give $\mathrm{Cp}^{\star} \operatorname{Ir}\left(\eta^{4}-3-\mathrm{MeBT}\right)$ and $\mathrm{Cp}{ }^{\star} \operatorname{Ir}\left(\eta^{4}-\mathrm{DBT}\right)$, respectively.

Experimental section

General procedures. All manipulations were carried out under N_{2} in reagent grade solvents by using standard Schlenk techniques. Solvents were distilled under N_{2} from the following drying agents: tetrahydrofuran (THF) and diethyl ether from sodium/benzophenone, hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2}. The solvents were stored over $4-\AA$ molecular sieves under N_{2}, except for acetone which was stored over MgSO_{4} and purged with N_{2} prior to use. The neutral alumina (Brockmann, Activity I) used for chromatography was deoxygenated at room temperature in high vacuum for 16 h , deactivated with $5 \% \mathrm{w} / \mathrm{w}_{2}$-saturated water, and stored under N_{2}. Benzo[b]thiophene (BT), dibenzothiophene (DBT), $\mathrm{Na}\left[\mathrm{H}_{2} \mathrm{Al}\right.$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}$] ("Red-Al", 3.4 M solution in toluene), cobaltocenium hexafluorophosphate $\left(\mathrm{Cp}_{2} \mathrm{Co}\right) \mathrm{PF}_{6}$, $\left(\mathrm{Ph}_{3} \mathrm{C}^{2} \mathrm{BF}_{4}\right.$, and AgBF_{4} were purchased from Aldrich Chemical Co. $\left[\mathrm{Cp}^{\star} \mathrm{IrCl}_{2}\right]_{2}[9],\left[\mathrm{Cp}^{\star} \operatorname{Ir}(\mathrm{BT})\right]\left(\mathrm{BF}_{4}\right)_{2}(1 \mathrm{a})[10],\left[\mathrm{Cp}{ }^{\star} \operatorname{Ir}(2-\mathrm{MeBT})\right]\left(\mathrm{BF}_{4}\right)_{2}$ (1b) $[7],\left[\mathrm{Cp}{ }^{\star} \operatorname{Ir}(3-\mathrm{MeBT})\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{1 c})[10],\left[\mathrm{Cp}^{\star} \operatorname{Ir}\left(2,3-\mathrm{Me}_{2} \mathrm{BT}^{2}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{1 d})[10]$, and the sodium potassium alloy $\mathrm{NaK}_{2.8}$ [11] were prepared by literature methods.

Elemental analyses were performed by Galbraith Laboratories, Inc. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Nicolet NT-300 spectrometer using deuterated solvents as internal locks. Electron ionization mass spectra (EI-MS) were run on a Finnigan 4000 spectrometer. Fast atom bombardment (FAB) spectra were run on a Kratos MS-50 mass spectrometer using a 2-nitrophenyl octyl ether / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ matrix.
$C p^{*} \operatorname{Ir}\left(\eta^{4}-B T \cdot 2 H\right)(2 a)$. To a solution of $0.150 \mathrm{~g}(0.236 \mathrm{mmol})$ of 1 a dissolved in 30 mL of THF at room temperature was added $0.14 \mathrm{~mL}(0.476 \mathrm{mmol})$ of "Red-Al" with stirring. The solution turned from colorless to light yellow. After stirring for 16 h at room temperature, the solution was evaporated to dryness in vacuo. The orange-yellow residue was chromatographed on an alumina (neutral, $80-150$ mesh) column ($1.5 \times 8 \mathrm{~cm}$) at room temperature with hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10: 1$) as the eluant. After vacuum removal of the solvent from the yellow fraction, the crude product was recrystallized from hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(15: 1)$ at $-80^{\circ} \mathrm{C}$ to give $0.039 \mathrm{~g}\left(36 \%\right.$, based on 1a) of 2 a as light yellow crystals, m.p. $120-121^{\circ} \mathrm{C}$ (decomp.). EI-MS: $m / e 464$ (M^{+}). Anal. Found: C, 46.53; H, 5.05. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{SIr}$ calc.: C, 46.63; H, 5.00%.
$C p^{\star} \operatorname{Ir}\left(\eta^{4}-2-M e B T \cdot 2 H\right)(2 b)$. To a stirred solution of $1 \mathrm{~b}(0.370 \mathrm{~g}, 0.570 \mathrm{mmol})$ in 40 mL of THF was added $0.34 \mathrm{~mL}(1.14 \mathrm{mmol})$ of "Red-Al" at room temperature. The solution immediately turned light yellow but was stirred at room temperature for 13 h . Subsequent treatment of the resulting mixture as described for 2a gave 0.092 g (34%, based on 1b) of light yellow crystals, 2 b (m.p. $58-59^{\circ} \mathrm{C}$, decomp.). EI-MS: $m / e 478$ (M^{+}). Anal. Found: C, 48.11 ; H, 5.36. $\mathrm{C}_{19} \mathrm{H}_{25}$ SIr calc.: C, 47.78; H, 5.28\%.
$C p^{\star} \operatorname{Ir}\left(\eta^{4}-3-\mathrm{MeBT} \cdot 2 H\right)(2 c)$. Similar to the preparation of $2 \mathrm{a}, 0.320 \mathrm{~g}(0.493$ $\mathrm{mmol})$ of 1 c and $0.29 \mathrm{~mL}(0.984 \mathrm{mmol})$ of "Red-Al" were allowed to react with stirring at room temperature for 14 h . Further treatment of the resulting mixture as described for 2 a gave $0.070 \mathrm{~g}(30 \%$, based on 1c) of light yellow crystalline 2 c (m.p. $95-96^{\circ} \mathrm{C}$, decomp.). EI-MS: $m / e 478\left(M^{+}\right)$. Anal. Found: C, 47.82; H, 5.25. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{SIr}$ calc.: $\mathrm{C}, 47.78 ; \mathrm{H}, 5.28 \%$.
$C p^{*} I r\left(\eta^{4}-2,3-M e_{2} B T \cdot 2 H\right)(2 d)$. This complex was prepared in a similar manner as that for 2a. A solution of $1 d(0.352 \mathrm{~g}, 0.531 \mathrm{mmol})$ was reacted with
Table 1
${ }^{1} \mathrm{H}$ NMR data ${ }^{a}$ for complexes 2-9 (δ, TMS as internal reference)

Complex	H1	H2	H3	H4	H5	H6	H7	H8	H9	BT-CH3	$\begin{aligned} & \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5} \\ & \text { or } \mathrm{C}_{5} \mathrm{H}_{5} \end{aligned}$
$\overline{\mathrm{Cp}}{ }^{*} \mathrm{Ir}(\mathrm{BT} \cdot 2 \mathrm{H})(2 \mathrm{a})^{\text {b }}$		6.62 (d)	6.39 (d)	4.87 (d)	2.76 (m)	1.49-1.40 (m, 2H)	1.38-1.30 (m, 2H)				1.77 (s)
		6.72 (d)	6.41 (d)	4.91 (d)	2.79 (m)	1.48-1.44 (m, 2H)	1.37-1.33 (m, 2H)				1.77 (s)
Cp ${ }^{*} \mathrm{Ir}(2-\mathrm{MeBT} \cdot 2 \mathrm{H})(\mathbf{2 b})^{\text {b }}$			6.09 (s)	4.78 (d)	2.67 (m)	1.75 (m, 2H)	1.52 (m, 2H)			2.30 (s)	1.82 (s)
$\mathrm{Cp}^{+} \mathrm{Ir}(3-\mathrm{MeBT} \cdot 2 \mathrm{H})(2 \mathrm{c}){ }^{\text {b }}$		6.19 (br)		4.77 (d)	2.76 (m)	1.74 (m, 2H)	1.56 (m 2H)			1.86 (br)	1.76 (s)
Cp* ${ }^{*}$ ($\left.\mathbf{(2 , 3 - M e}{ }_{2} \mathrm{BT} \cdot 2 \mathrm{H}\right)(\mathbf{2 d})^{\text {b }}$				4.72 (d)	2.67 (m)	1.78 (m, 2H)	1.46 (m, 2H)			2.18 (s)	1.79 (s)
										1.88 (s)	
$\left[\mathrm{CP}^{*} \mathrm{Ir}(\mathrm{DBT})\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{3})^{c}\right.$	8.00 (d)	7.18 (t)	7.29 (t)	7.68 (d)		7.89 (d)	7.04 (m)	7.01 (m)	7.87 (d)		1.29 (s)
	8.55 (d)	7.92 (t)	8.03 (t)	8.29 (d)		8.19 (d)	7.49 (m)	7.47 (m)	8.16 (d)		1.99 (s)
Cp* ${ }^{\text {Ir(DBT }}$-2H) (4) ${ }^{\text {c }}$	7.53 (m)	7.13-7.09	(m, 2H)	7.39 (m)		1.88 (m, 2H)	1.50 (m, 2H)	2.99 (m)	5.30 (d)		1.66 (s)
$\mathrm{Cp}{ }^{*} \mathrm{Ir}(3-\mathrm{MeBT})(5)^{\text {b }}$		6.37 (br)		3.34 (d)	5.81-5.78	(m, 2H)	3.40 (d)			2.13 (br)	1.96 (s)
$\mathrm{Cp}^{*} \mathrm{Ir}(\mathrm{DBT})\left(6{ }^{\text {b }}\right.$	7.46 (d)	6.96 (t)	7.19 (t)	7.40 (d)		3.48 (d)	$5.97-5.94$ (m, 2H)		3.67 (d)		1.97 (s)
$\begin{aligned} & \mathrm{CpCo}^{\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{\cdot} \cdot \mathrm{C}_{6} \mathrm{H}_{5}\right)(7)^{b}} \\ & {\left[\mathrm{Cp}^{*} \operatorname{Ir}(3-\mathrm{MeBT} \cdot \mathrm{H})\left(\mathrm{BF}_{4}\right)(8)^{c}\right.} \end{aligned}$	3.84 (t) ${ }^{\text {d }}$	5.26 (m, 2	H) ${ }^{\text {d }}$, 2.92	$(\mathrm{m}, 2 \mathrm{H})^{\text {d }}$	7.13-7.00	$(\mathrm{m}, 3 \mathrm{H})^{e}, 6.79-6.76$	(m,2H) ${ }^{\text {e }}$				4.79 (s)
$\left.\left.\underline{C P *}{ }^{*} \operatorname{Ir}(3-\mathrm{MeBT} \cdot \mathrm{H}) \mathrm{(BF}\right)_{4}\right)(8)^{\text {c }}$		7.30 (br)		7.14 (d)	5.60 (t)	$4.07(t)$ $5.10\left(\mathrm{~d} \mathrm{H}_{\text {t }}\right.$)	$\begin{aligned} & 5.00\left(\mathrm{~d}, \mathrm{H}_{\text {exo }}\right) \\ & 3.90\left(\mathrm{~m}, \mathrm{H}_{\text {endo }}\right) \end{aligned}$			2.19 (br)	1.88 (s)
$\left[\mathrm{Cp}^{*} \operatorname{Ir}(\mathrm{DBT} \cdot \mathrm{H})\right.$ (BF_{4}) $(9)^{\text {c }}$	8.21 (m)	7.95 (m)	7.70 (m)	7.58 (m)		$\begin{aligned} & 5.10\left(\mathrm{~d}, \mathrm{H}_{\text {exo }}\right) \\ & 3.98\left(\mathrm{~m}, \mathrm{H}_{\text {endo }}\right) \end{aligned}$	3.94 (m) ${ }^{\text {endo }}$	4.17 (t)	5.70 (d)		1.72 (s)
f	8.33 (m)	8.04 (m)	7.85 (m)	7.59 (m)		$\begin{aligned} & 5.13\left(\mathrm{~d}, \mathrm{H}_{\text {exd }}\right) \\ & 3.89\left(\mathrm{~m}, \mathrm{H}_{\text {endo }}\right) \end{aligned}$	3.80 (m)	4.08 (t)	5.52 (d)		1.69 (s)

${ }^{a} \mathrm{H}$ atoms are labelled as shown in eqs. $4-9 .{ }^{b} \mathrm{CDCl}_{3} .{ }^{c}$ Acetone- $d_{6} .{ }^{d} \eta^{4}$-cyclopentadienyl proton. ${ }^{e}$ phenyl proton. ${ }^{f} \mathrm{CD}_{3} \mathrm{NO}_{2}$.
"Red-Al" ($0.31 \mathrm{~mL}, 1.06 \mathrm{mmol}$) at room temperature for 12 h to yield 0.102 g (39%, based on 1d) of light yellow crystalline 2d (m.p. $88-89^{\circ} \mathrm{C}$ decomp.). EI-MS: $m / e 492\left(M^{+}\right)$. Anal. Found: C, 48.71; K, 5.42. $\mathrm{C}_{20} \mathrm{H}_{27}$ SIr calc.: C, 48.85; H, 5.53%.
$\left[C p^{\star} \operatorname{Ir}\left(\eta^{6}-D B T\right)\right]\left(B F_{4}\right)_{2}$ (3). This preparation was performed analogously to that for $1 \mathrm{a}-\mathrm{d}[7,10]$. To a stirred solution of $\left[\mathrm{Cp}^{\star} \mathrm{IrCl}_{2}\right]_{2}(0.500 \mathrm{~g}, 0.682 \mathrm{mmol})$ in 10 mL of acetone was added $\mathrm{AgBF}_{4}(0.500 \mathrm{~g}, 2.57 \mathrm{mmol})$. The solution was stirred for 10 min at room temperature and filtered through Celite; the filter was rinsed with additional acetone ($\sim 5 \mathrm{~mL}$). The volume of the filtrate was reduced to ~ 5 mL in vacuo, and then DBT ($4.24 \mathrm{~g}, 23.0 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 30 min and then cooled to room temperature. Approximately 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to precipitate the product. The solid was filtered from the solution and then dissolved in $\mathrm{CH}_{3} \mathrm{NO}_{2}$. The $\mathrm{CH}_{3} \mathrm{NO}_{2}$ solution was filtered to remove a black insoluble impurity. Addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 50 \mathrm{~mL})$ to the filtrate gave the product 3 as a white solid that was separated by filtration and dried in vacuo; yield $0.640 \mathrm{~g}(74 \%)$. This complex is slightly sensitive to moisture and should be stored under N_{2}. FAB MS: $m / e 512\left(\mathrm{M}^{+}\right)$. Anal. Found: C, 38.41; H, 3.45. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{SB}_{2} \mathrm{~F}_{8}$ Ir calc.: $\mathrm{C}, 38.56 ; \mathrm{H}, 3.38 \%$.
$C p^{\star} \operatorname{Ir}\left(\eta^{4}-D B T \cdot 2 H\right)(4)$. To $0.300 \mathrm{~g}(0.437 \mathrm{mmol})$ of 3 dissolved in 30 mL of THF at room temperature was added $0.26 \mathrm{~mL}(0.876 \mathrm{mmol})$ of "Red-Al" with stirring. The solution immediately turned light yellow but was stirred at room temperature for 20 h . The solvent was removed in vacuo, and the residue was chromatographed on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ with hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) as the eluant. The yellow band was collected. After vacuum evaporation of the solvent, the crude product was recrystallized from hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(20: 1)$ at $-80^{\circ} \mathrm{C}$ to give 0.079 g (35%, based on 3) of 4 as yellow crystals (m.p. $93-94^{\circ} \mathrm{C}$, decomp.). EI-MS: m / e $514\left(M^{+}\right)$. Anal. Found: C, 51.51 ; H, 5.05. $\mathrm{C}_{22} \mathrm{H}_{25}$ SIr calc.: C, 51.44 ; H, 4.91%.
$C p^{\star} \operatorname{Ir}\left(\eta^{4}-3-\mathrm{MeBT}\right)$ (5). Compound $1 \mathrm{c}(0.400 \mathrm{~g}, 0.616 \mathrm{mmol})$ was dissolved in 50 mL of THF at room temperature. To this solution was added $\mathrm{Cp}_{2} \mathrm{Co}$ [7,12*] freshly prepared by reduction of $\left(\mathrm{Cp}_{2} \mathrm{Co}\right) \mathrm{PF}_{6}(0.535 \mathrm{~g}, 1.60 \mathrm{mmol})$ in THF (20 mL) with $\mathrm{NaK}_{2.8}(0.056 \mathrm{~g}, 1.60 \mathrm{mmol})$. The reaction solution was stirred for 12 h at room temperature. The solvent was evaporated in vacuo, and the black-purple residue was chromatographed on an $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral) column with hexanes as the eluant. After removing the purple band (unreacted $\mathrm{Cp}_{2} \mathrm{Co}$) from the column, yellow and red bands were eluted separately with hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) and collected. After removal of the solvents from the two eluates under vacuum, the residues were recrystallized from hexanes at $-80^{\circ} \mathrm{C}$. From the first yellow fraction precipitated 0.071 g (24%, based on 1 c) of 5 as yellow crystals (m.p. $130-132^{\circ} \mathrm{C}$, decomp.). EI-MS: $m / e 476\left(M^{+}\right)$. Anal. Found: C, 47.77; H, 4.98. $\mathrm{C}_{19} \mathrm{H}_{23}$ SIr calc.: $\mathrm{C}, 47.98 ; \mathrm{H}, 4.87 \%$. From the second, red fraction, $0.028 \mathrm{~g}(21 \%$, based on 1 c$)$ of a red crystalline compound was obtained (m.p. $104-106^{\circ} \mathrm{C}$, decomp.). EI-MS: m / e $218\left(M^{+}\right)$. Anal. Found: C, 65.87; H, 6.63. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Co}$ calc.: C, 66.06 ; H, 6.93%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.45(\mathrm{t}, 1 \mathrm{H}), 5.29(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{q}, 2 \mathrm{H}), 1.24(\mathrm{t}, 3 \mathrm{H})$, $4.70(\mathrm{~s}, 5 \mathrm{H})$. Although the elemental analysis of this red compound is the same as

[^1]that of $\mathrm{CpCo}\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ [13], the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds are clearly different. We were unable to obtain crystals of the red compound that were suitable for an X-ray diffraction study.
$C p^{\star} \operatorname{Ir}\left(\eta^{4}-D B T\right)$ (6) and $\mathrm{CpCo}\left(\eta^{4}-C_{5} H_{5} \cdot C_{6} H_{5}\right)$ (7). To $0.350 \mathrm{~g}(0.511 \mathrm{mmol})$ of 3 dissolved in 50 mL of THF at room temperature was added fresh $\mathrm{Cp}_{2} \mathrm{Co}$ prepared [12*] by reaction of $\left(\mathrm{Cp}_{2} \mathrm{Co}\right) \mathrm{PF}_{6}(0.410 \mathrm{~g}, 1.23 \mathrm{mmol})$ with $\mathrm{NaK}_{2.8}(0.043$ $\mathrm{g}, 1.23 \mathrm{mmol}$) in THF solution. The solution was stirred for 12 h at room temperature. Further treatment of the resulting mixture as described above for 5 gave $0.052 \mathrm{~g}(20 \%$, based on 3$)$ of yellow crystalline 6 and $0.025 \mathrm{~g}(18 \%$, based on 3) of 7 as red crystals. 6: m.p. $98-100^{\circ} \mathrm{C}$ (decomp.). EI-MS: $m / e 512\left(M^{+}\right)$. Anal. Found: C, $51.65 ; \mathrm{H}, 4.85 . \mathrm{C}_{22} \mathrm{H}_{23}$ SIr calc.: C, $51.64 ; \mathrm{H}, 4.53 \%$. 7: m.p. $127-128.5^{\circ} \mathrm{C}$ (decomp.) (Lit. 128-129.5 ${ }^{\circ} \mathrm{C}$ [14]). EI-MS: $m / e 266\left(M^{+}\right)$. Anal. Found: C, 72.02; $\mathrm{H}, 5.82 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Co}$ calc.: C, 72.19; H, 5.68%.

Reaction of $2 c$ with $\left(\mathrm{Ph}_{3} \mathrm{C}\right) B F_{4}$ to give $\left[C p^{*} \operatorname{Ir}\left(\eta^{5}-3-\mathrm{MeBT} \cdot H\right)\right] B F_{4}$ (8). To a solution of $2 \mathrm{c}(0.020 \mathrm{~g}, 0.042 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\left(\mathrm{Ph}_{3} \mathrm{C}^{2}\right) \mathrm{BF}_{4}$ ($0.014 \mathrm{~g}, 0.042 \mathrm{mmol}$). After being stirred for 15 min at room temperature, the pale yellow product 8 was precipitated from the resulting solution by addition of $\mathrm{Et}_{2} \mathrm{O}$ ($\sim 6 \mathrm{~mL}$). Yield $0.020 \mathrm{~g}\left(83 \%\right.$, based on 2 c). The ${ }^{1} \mathrm{H}$ NMR and FAB MS spectra of 8 are essentially identical with those previously reported [7] for isomer \mathbf{A}.

Reaction of $2 c$ with 2 equiv. of $\left(\mathrm{Ph}_{3} \mathrm{C}\right) B F_{4}$ to give 1c. To a solution of $\mathbf{2 c}(0.020$ $\mathrm{g}, 0.042 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\left(\mathrm{Ph}_{3} \mathrm{C}\right) \mathrm{BF}_{4}(0.028 \mathrm{~g}, 0.084 \mathrm{mmol})$. The reaction solution was stirred for 15 min at room temperature. The pale yellow product that precipitated from the solution was filtered and dried in vacuo to give $0.023 \mathrm{~g}\left(85 \%\right.$, based on 2c) of 1 c as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{NO}_{2}\right): \delta$ $8.42(\mathrm{q}, 1 \mathrm{H}), 8.16(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 15 \mathrm{H}), 2.58(\mathrm{~d}, 3 \mathrm{H})$.

Reaction of 4 with $\left(\mathrm{Ph}_{3} C\right) B F_{4}$ to give 3 and $\left[C p^{\star} \operatorname{Ir}(D B T \cdot H)\right] B F_{4}$ (9). $\quad 0.025 \mathrm{~g}$ (0.049 mmol) of 4 was dissolved in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. To this solution was added $0.016 \mathrm{~g}(0.049 \mathrm{mmol})$ of $\left(\mathrm{Ph}_{3} \mathrm{C}\right) \mathrm{BF}_{4}$. The solution was stirred for 15 min at room temperature. The resulting white precipitate was separated by filtration, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 0.5 \mathrm{~mL})$, and dried in vacuo to give white, solid 3; yield $0.010 \mathrm{~g}\left(30 \%\right.$, based on 4). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{NO}_{2}\right): \delta 8.55(\mathrm{~d}, 1 \mathrm{H}), 8.29$ (d, $1 \mathrm{H}), 8.19(\mathrm{~d}, 1 \mathrm{H}), 8.16(\mathrm{~d}, 1 \mathrm{H}), 8.04(\mathrm{t}, 1 \mathrm{H}), 7.92(\mathrm{t}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H})$, 1.99 ($\mathrm{s}, 15 \mathrm{H}$). The filtrates were combined and reduced to $\sim 4 \mathrm{~mL}$ in vacuo. To this filtrate was added 5 mL of $\mathrm{Et}_{2} \mathrm{O}$ to precipitate the product which was filtered and dried in vacuo to give $0.016 \mathrm{~g}(55 \%$, based on 4) of 9 as a white solid. FAB MS: $m / e 513\left(M^{+}\right)$. Anal. Found: C, $44.31 ; \mathrm{H}, 4.17 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{SBF}_{4}$ Ir calc.: $\mathrm{C}, 44.08$; H, 4.04\%.

Reaction of 4 with 2 equiv. of $\left(P h_{3} C\right) B F_{4}$ to give 3. To a solution of $4(0.022 \mathrm{~g}$, $0.043 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\left(\mathrm{Ph}_{3} \mathrm{C}\right) \mathrm{BF}_{4}(0.028 \mathrm{~g}, 0.086 \mathrm{mmol})$ at room temperature. The reaction solution was stirred for 15 min at this temperature. Further treatment of the resulting mixture as described in the reaction of 2 c with 2 equiv. of $\left(\mathrm{Ph}_{3} \mathrm{C}\right) \mathrm{BF}_{4}$ gave $0.027 \mathrm{~g}(90 \%$, based on 4$)$ of white solid, 3 , which was identified by its ${ }^{1} \mathrm{H}$ NMR spectrum.
X-ray structure determinations of $2 c$ and 4. Light ycllow crystals of $2 c$ and 4 suitable for X-ray diffraction study were obtained by recrystallization from hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-80^{\circ} \mathrm{C}$. For each compound, a single crystal of approximate dimensions $0.3 \times 0.4 \times 0.5 \mathrm{~mm}$ was mounted on the end of a glass fiber and coated with a thin layer of epoxy cement. All measurements were made at $-80^{\circ} \mathrm{C}$

Table 2
Crystallographic data for 2 c and 4

	2c	4
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{SIr}$	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{SIr}$
Formula weight	477.67	513.70
Crystal system	Monoclinic	Monoclinic
Lattice parameters	$a=10.786(4) \AA$	$a=8.62(7) \AA$
	$b=10.039(10) \AA$	$b=10.37(2) \AA$
	$c=15.214(4) \AA$	$c=20.954(8) \AA$
	$\beta=100.26(2)^{\circ}$	$\beta=92.6(1)^{\circ}$
	$V=1782(2) \AA^{3}$	$V=1872(13) \AA^{3}$
Space group	$P 2_{1} / a(\# 14)$	$P 2_{1} / n(\# 14)$
Z value	4	4
$D_{\text {calc }}$	$1.77 \mathrm{~g} / \mathrm{cm}^{3}$	$1.82 \mathrm{~g} / \mathrm{cm}^{3}$
$F(000)$	920	992
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)$	$\begin{aligned} & 80.49 \mathrm{~cm}^{-1} \\ & \text { (correction applied) } \end{aligned}$	$\begin{aligned} & 76.73 \mathrm{~cm}^{-1} \\ & \quad \text { (correction applied) } \end{aligned}$
Diffractometer	Rigaku AFC6	Rigaku AFC6
Radiation	Mo- $K_{\alpha}(\lambda=0.71069)$ Graphite-monochromated	$\operatorname{Mo}-K_{\alpha}(\lambda=0.71069)$ Graphite-monochromated
Temperature	$-80^{\circ} \mathrm{C}$	$-80^{\circ} \mathrm{C}$
$2 \theta_{\text {max }}$	60.0°	60.0°
No. observations $(I>3.00 \sigma(I))$	2585	3632
No. variables	190	217
Residuals: $R^{a} ;{ }^{\text {w }}{ }^{\text {b }}$	0.051; 0.068	0.053; 0.071
Goodness of Fit Indicator ${ }^{\text {c }}$	1.57	2.05
Maximum shift in final cycle	0.02	0.01

$\overline{{ }^{a} R=\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right| \cdot{ }^{b} R_{w}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2} ; w=1 / \sigma^{2}\left(\left|F_{\mathrm{o}}\right|\right) .{ }^{c} \text { Quality-of-fit }\right.}$
$=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\left(N_{\mathrm{obs}}-N_{\text {parameters }}\right)\right]^{\mathbf{1}^{/ 2}}$.
on a Rigaku AFC6 diffractometer with graphite-monochromated Mo- K_{α} radiation and a 12 kW rotating anode generator. Using a search procedure, 25 reflections were selected within the range of $14^{\circ}<2 \theta<50^{\circ}$ and centered carefully. Indices for these reflections were obtained from an automatic indexing program index and cell parameters were determined using 13 high angle ($25^{\circ}<2 \theta<35^{\circ}$) reflections and their Friedel counterparts. 5715 reflections were measured for 2 c and 6223 for 4 using the $\omega-2 \theta$ scan technique. 2740 out of the measured 5715 reflections for 2 c and 4000 out of 6223 for 4 were considered to be "observed" reflections with $I \geq 3 \sigma(I)$. After averaging, 2585 and 3632 reflections remained and were used for subsequent structure determinations for 2c and 4, respectively. The space groups were uniquely determined to be $P 2_{1} / a$ for 2 c and $P 2_{1} / n$ for 4 from the conditions limiting possible reflections: $2 \mathrm{c}: ~ h 01, h=2 n ; 0 k 0, k=2 n$ and 4: $h 01$, $h+1=2 n ; 0 k 0, k=2 n$. Further experimental details are given in Table 2.

The structures were solved by direct methods and refined by full-matrix leastsquares refinement to conventional residual indices of 5.53% for $\mathbf{2 c}$ and 5.56% for 4 [15a]. The final positional and equivalent isotropic thermal parameters, bond distances and angles for 2 c and 4 arc given in Tables 3-5; ORTEP drawings [15b] of 2c and 4 are shown in Figs. 1 and 2, respectively.

Table 3
Positional parameters and equivalent isotropic thermal parameters for 2c and 4

Atom	2c				4			
	x	y	z	$B_{\text {eq }}{ }^{a}$	x	y	z	$B_{\text {eq }}{ }^{a}$
Ir	0.72290(4)	0.01301(3)	0.71494(3)	2.04(1)	0.92877(5)	0.31468(4)	0.65025(2)	1.82(2)
S	0.5510(3)	0.0187(3)	0.8888(2)	3.5(1)	0.8969(5)	-0.0122(3)	0.6317(2)	3.3(1)
C1	0.561(1)	-0.027(1)	0.7787(8)	2.5(4)	0.943(1)	0.118(1)	0.6858(5)	2.3(5)
C2	0.642(1)	-0.134(1)	$0.7828(7)$	2.4(4)	0.793(1)	0.182(1)	$0.6996(5)$	2.3(4)
C3	0.669(1)	-0.175(1)	$0.695(1)$	3.4(5),	0.815(1)	0.296 (1)	$0.7386(5)$	2.5(5)
C4	0.604(1)	-0.111(1)	0.625(1)	4.3(7)	0.974(1)	0.324(1)	0.7504(5)	2.7(5)
C5	0.466(1)	-0.078(2)	0.619(1)	4.8(7)	1.090(2)	0.221(1)	$0.7746(7)$	3.4(6)
C6	0.443(1)	-0.016(1)	0.706(1)	4.2(6)	1.059(1)	0.094(1)	$0.7390(7)$	3.3(6)
C7	0.654(1)	-0.094(1)	0.934(1)	3.8(6)	0.696(2)	0.020(1)	$0.6275(6)$	3.2(6)
C8	0.696 (1)	-0.170(1)	0.8744(9)	3.2(5)	0.657(2)	0.123(1)	$0.6675(6)$	3.0(6)
C9	$0.788(1)$	-0.270(1)	0.895(1)	4.7(7)	0.503(2)	0.161(1)	0.6699(6)	3.1(6)
C10					0.389(2)	0.097(2)	0.6326(8)	4.6(8)
C11					0.428(2)	-0.005(2)	0.5947(7)	4.3(7)
C12					0.585(2)	-0.045(1)	0.5901(7)	4.1(7)
C13	0.796(1)	0.194(1)	0.7646(7)	2.2(4)	0.995(2)	0.323(1)	$0.5500(5)$	2.6(5)
C14	0.736(1)	0.280(1)	0.822(1)	3.7(6)	1.064(2)	0.215(1)	0.5136(6)	4.2(7)
C15	0.772(1)	0.1939(9)	0.6672(7)	1.9(4)	1.087(1)	0.413(1)	0.5884(5)	2.1(4)
C16	0.688(1)	0.277(1)	0.6074(9)	3.1(5)	1.261(1)	$0.425(1)$	$0.5948(7)$	3.8(6)
C17	0.854(1)	$0.100(1)$	0.6391(7)	2.1(4)	0.980(2)	0.508(1)	$0.6110(6)$	2.7(5)
C18	0.863(1)	0.073(1)	$0.5420(8)$	3.3(5)	1.021(2)	0.622(1)	0.6550(6)	3.2(6)
C19	0.928(1)	0.047(1)	$0.7200(8)$	2.5(4)	0.827(1)	0.473(1)	0.5875(6)	2.5(5)
C20	1.024(1)	-0.051(1)	0.717(1)	4.5(6)	0.680(1)	0.547(2)	0.5995(7)	3.8(7)
C21	0.893(1)	$0.106(1)$	0.7945(8)	2.7(4)	0.836(1)	0.360 (1)	0.5520(6)	2.8(5)
C 22	0.944(1)	0.082(1)	0.890(1)	4.3(6)	0.709(2)	0.287(1)	0.5162(7)	4.1(7)

${ }^{a} B_{\mathrm{eq}}=4 / 3\left[\beta_{11} a^{2}+\beta_{22} b^{2}+\beta_{33} c^{2}+\beta_{12} 2 a b \cos \gamma+\beta_{13} 2 a c \cos \beta+\beta_{23} 2 b c \cos \alpha\right]$ while the anisotropic temperature factor is defined as: $\exp \left[-\Sigma\left(\beta_{i j} h_{i} h_{j}\right)\right]$, and $i, j=1-3$.

Table 4
Bond distances $(\AA)^{a}$ for 2c and 4

	2c	$\mathbf{4}$		2c	4
Ir-C2	$2.16(1)$	$2.11(1)$	C5-C6	$1.53(2)$	$1.53(2)$
Ir-C4	$2.17(1)$	$2.12(1)$	C7-C12		$1.39(2)$
Ir-C3	$2.13(1)$	$2.14(1)$	C7-C8	$1.35(2)$	$1.41(2)$
IrC1	$2.17(1)$	$2.18(1)$	C8-C9	$1.47(2)$	$1.38(2)$
Ir-C15	$2.19(1)$	$2.18(1)$	C9-C10		$1.40(2)$
Ir-C13	$2.20(1)$	$2.20(1)$	C10-C11		$1.37(2)$
Ir-C17	$2.18(1)$	$2.22(1)$	C11-C12		$1.42(3)$
Ir-C21	$2.26(1)$	$2.22(1)$	C13-C21	$1.44(1)$	$1.43(2)$
Ir-C19	$2.23(1)$	$2.26(1)$	C13-C15	$1.45(1)$	$1.45(2)$
S-C7	$1.72(1)$	$1.76(2)$	C13-C14	$1.50(2)$	$1.50(2)$
S-C1	$1.75(1)$	$1.79(1)$	C15-C17	$1.46(1)$	$1.45(2)$
C1-C6	$1.55(2)$	$1.48(2)$	C15-C16	$1.48(1)$	$1.50(2)$
C1-C2	$1.45(1)$	$1.49(2)$	C17-C19	$1.46(1)$	$1.43(2)$
C2-C3	$1.47(2)$	$1.44(2)$	C17-C18	$1.51(1)$	$1.53(2)$
C2-C8	$1.46(2)$	$1.46(2)$	C19-C21	$1.39(2)$	$1.39(2)$
C3-C4	$1.36(2)$	$1.42(2)$	C19-C20	$1.50(2)$	$1.51(2)$
C4-C5	$1.52(2)$	$1.54(2)$	C21-C22	$1.47(2)$	$1.51(2)$

[^2]Table 5
Selected bond angles ${ }^{a}$ for 2 c and 4

	2c	
$C(7)-S-C(1)$	$92 .(6)$	$94.5(6)$
$C(2)-C(1)-C(6)$	$121 .(1)$	$119 .(1)$
$C(2)-C(1)-S$	$108.6(8)$	$107 .(1)$
$C(6)-C(1)-S$	$118.7(9)$	$118 .(1)$
$C(1)-C(2)-C(8)$	$113 .(1)$	$114 .(1)$
$C(1)-C(2)-C(3)$	$114 .(1)$	$113 .(1)$
$C(8)-C(2)-C(3)$	$132 .(1)$	$133 .(1)$
$C(4)-C(3)-C(2)$	$113 .(1)$	$112 .(1)$
$C(3)-C(4)-C(5)$	$122 .(1)$	$122 .(1)$
$C(4)-C(5)-C(6)$	$110 .(1)$	$110 .(1)$
$C(5)-C(6)-C(1)$	$110 .(1)$	$109 .(1)$
$C(8)-C(7)-S$	$116 .(1)$	$112 .(1)$
$C(7)-C(8)-C(2)$	$110 .(1)$	$112 .(1)$
$C(7)-C(8)-C(9)$	$127 .(1)$	$120 .(1)$
$C(2)-C(8)-C(9)$	$123 .(1)$	$128 .(1)$
$C(8)-C(9)-C(10)$		$120 .(1)$
$C(11)-C(10)-C(9)$		$120 .(2)$
$C(10)-C(11)-C(12)$		$122 .(1)$
$C(7)-C(12)-C(11)$	$117 .(1)$	
$C(12)-C(7)-C(8)$		$122 .(1)$
$C(12)-C(7)-S$	$106 .(1)$	
$C(13)-C(15)-C(17)$	$107.7(9)$	$106 .(1)$
$C(19)-C(17)-C(15)$	$109 .(1)$	$108 .(1)$
$C(19)-C(21)-C(13)$	$109 .(1)$	$109 .(1)$
$C(21)-C(13)-C(15)$	$108 .(1)$	$109 .(1)$
$C(21)-C(19)-C(17)$		

${ }^{a}$ Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

Results and discussion

Preparation of complexes $C p^{\star} I r\left(\eta^{4}-B T s \cdot 2 H\right)(2 a-d)$ and $C p^{\star} \operatorname{Ir}\left(\eta^{4}-D B T \cdot 2 H\right)$ (4). The η^{6} benzo[b]thiophene and methyl-substituted benzo[b]thiophene complexes of iridium, $\left[\mathrm{Cp}^{\star} \operatorname{Ir}\left(\eta^{6}-\mathrm{BTs}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}\left(\mathrm{Cp}^{\star}=\mathrm{C}_{5} \mathrm{Me}_{5}, \mathrm{BTs}=\mathrm{BT}(1 \mathrm{a}), 2-\mathrm{MeBT}\right.$ (1b), 3-MeBT (1c), 2,3-Me ${ }_{2} \mathrm{BT}$ (1d), react with two moles of $\mathrm{Na}\left[\mathrm{H}_{2} \mathrm{Al}-\right.$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}$] ("Red-Al", 3.4 M solution in toluene) at room temperature for 12 to 16 h according to eq. 4 to give complexes $\mathbf{2 a - d}$ in $30-39 \%$ yields.

Fig. 1. ortep drawing of $\mathrm{Cp}^{\star} \overline{\ln }\left(\eta^{4}-3-\mathrm{MeBT} \cdot 2 \mathrm{H}\right)(2 \mathrm{c})$.

Product 2c was established by an X-ray crystallographic study (see below) to have a structure in which the two added hydrides $\left(\mathrm{H}^{-}\right)$are at the 6 and 7 positions (eq. 4) and the Ir is coordinated to the diene portion of the resulting cyclohexadiene ring. The solution ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) is consistent with this structure; it shows high-ficld multiplets ($\delta 1.74,1.56 \mathrm{ppm}$) for the protons on the saturated carbons at positions 6 and 7 , a low-field quartet ($\delta 6.19 \mathrm{ppm}$) for the uncoordinated thiophene H 2 proton, and intermediate signals ($\delta 2.76$ and 4.77 ppm) for H 4 and H 5 of the coordinated diene system. Comparable ${ }^{1} \mathrm{H}$ NMR signals for complexes 2a, 2b and 2d have been assigned (Table 1); these assignments are also consistent with upfield shifts observed [7] when one hydride (H^{-}) is added to $\mathbf{1 a}-\mathbf{d}[7,10]$ to give the mono-hydride derivatives $\mathrm{Cp}{ }^{\star} \operatorname{Ir}\left(\eta^{5}-\mathrm{BTs} \cdot \mathrm{H}\right)^{+}$(eq. 2).

A reaction analogous to that (eq. 4) of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{BTs}\right)^{2+}$ also occurs with the dibenzothiophene complex $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}$ (eq. 5). Thus, two equivalents of $\mathrm{Na}\left[\mathrm{H}_{2} \mathrm{Al}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}\right.$] react at room temperature during 20 h to afford complex 4 in 35% yield. The structure of 4 as determined by X -ray crystallography (see below) shows that the two added hydrides are at the 6 and 7 positions. Thus, like 2a-d, 4 is a cyclohexadiene complex. The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 shows the expected high-field multiplets for H 6 and H 7 , down-field signals for the uncoordinated aromatic ring protons ($\mathrm{H} 1-\mathrm{H} 4$), and intermediate field signals for H 8 and H9 of the coordinated diene. These proton assignments are consistent with those of $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}(3), \mathrm{CpRu}\left(\eta^{6}-\mathrm{DBT}\right)^{+}[8]$ and $\mathrm{CpRu}\left(\eta^{5}-\mathrm{DBT} \cdot \mathrm{H}\right)$ [8].

Complexes 2a-d and 4 are soluble in both polar and non-polar organic solvents and are air-stable for short periods in the solid state. In the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 a}-\mathbf{d}$, there is evidence for only one isomer even though the addition of one H^{-}to compounds la-d gives four isomers. One would expect the addition of a second H^{-}to give at least two isomers of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{BTs} \cdot 2 \mathrm{H}\right)$. It seems likely that more than one isomer is actually formed, as suggested by our earlier studies (eq. 2) [7], but the chromatographic purification procedure leads to the isolation of only one isomer. The formation of 4 (eq. 5) presumably proceeds via the mono-hydride $\mathrm{Cp}^{\star} \operatorname{Ir}\left(\eta^{5}-\mathrm{DBT} \cdot \mathrm{H}\right)^{+}$. This compound has not been prepared previously; however, the analogous $\mathrm{CpRu}\left(\eta^{5}-\mathrm{DBT} \cdot \mathrm{H}\right)$ has been prepared [8] and exists in two isomeric forms. Thus, reaction 5 may occur via more than one isomer of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{5}-\mathrm{DBT} \cdot\right.$ $\mathrm{H})^{+}$; however, only one isomer of 4 is isolated.

A precedent for addition of two hydrides to $\mathrm{Cp}^{*} \operatorname{Ir}(\text { arene })^{2+}$ complexes is the reaction of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)^{2+}$ with $\mathrm{Na}\left[\mathrm{H}_{2} \mathrm{Al}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}\right]$ to give the cyclohexadiene complex $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{8}\right)$ [16]. Arenes in $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{6} \text {-arene }\right)^{2+}$ compiexes are unusually susceptible [16] to nucleophilic attack [17] as compared with arenes in other η^{6}-arene complexes. The free 6,7-dihydrobenzo[b]thiophenes generated as ligands in 2 have been prepared previously [18] by lengthy procedures. The 6,7-dihydrodibenzothiophene produced as a ligand in 4 was previously unknown, based on a literature search.

Structure of $C p^{*} \operatorname{Ir}\left(\eta^{4}-3-M e B T \cdot 2 H\right)(2 c)$. The structure (Fig. 1) of 2c is generally similar to that of other cyclohexadiene complexes [19]. The saturated carbons $\mathrm{C}(5)$ and $\mathrm{C}(6)$ lie 0.97 and $0.85 \AA$, respectively, out of the plane defined by $\mathrm{C}(1)$, $C(2), C(3)$ and $C(4)$. The dihedral angle between this plane and the $C(1), C(4)$, $\mathrm{C}(5), \mathrm{C}(6)$ plane is 38.7°. Except for $\mathrm{C}(5)$ and $\mathrm{C}(6)$, the $3-\mathrm{MeBT} \cdot 2 \mathrm{H}$ ligand is essentially planar as indicated by the small 4.5° angle between the $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3)$, $C(4)$ plane and that defined by $C(1), C(2), C(7), C(8)$ and S. The sulfur and four carbon atoms of the thiophene lie in a plane ($\pm 0.02 \AA$), while the methyl carbon $C(9)$ is $0.074 \AA$ out of this plane away from the Ir.

Structure of $C p^{*} \operatorname{Ir}\left(\eta^{4}-D B T \cdot 2 H\right)$ (4). Like $2 \mathrm{c}, 4$ is a cyclohexadiene complex (Fig. 2) in which the saturated carbons $C(5)$ and $C(6)$ lie above $(0.92$ and $1.02 \AA$, respectively) the plane of the coordinated carbon atoms $C(1), C(2), C(3)$, and $C(4)$. The dihedral angle between this plane and that defined by $\mathrm{C}(1), \mathrm{C}(4), \mathrm{C}(5)$, and $C(6)$ is 43.4°. The atoms $S, C(1), C(2), C(7)-C(12)$ lie $(\pm 0.02 \AA)$ in a plane that forms a dihedral angle of 8.43° with the $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$ plane. The $\mathrm{Cp}{ }^{*}$ ring carbon plane is essentially parallel (5.3° dihedral angle) to that of $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3)$, C(4).

Reduction of $C p^{*} \operatorname{Ir}\left(\eta^{6}-3-M e B T\right)^{2+}$ (1c) and $C p^{*} \operatorname{Ir}\left(\eta^{6}-D B T\right)^{2+}$ (3) with $C p_{2} C o$. Complex 1c reacts (eq. 6) with 2 equivalents of $\mathrm{Cp}_{2} \mathrm{Co}$ at room temperature during a 12 h period to give in 24% yield $\mathrm{Cp}^{\star} \operatorname{Ir}\left(\eta^{4}-3-\mathrm{MeBT}\right)(5)$, which is air-sensitive and also not very stable thermally as the solid or in solution. Compound 5 is assigned the η^{4}-arene structure based primarily on the upfield doublets for H 4 and H 7 at 3.34 and 3.40 ppm and the somewhat less upfield multiplets assigned to H 5 and

Fig. 2. ortep drawing of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{DBT} \cdot 2 \mathrm{H}\right)$ (4).

H6. The quartet at 6.37 assigned to H 2 is the furthest downfield as expected for the uncomplexed thiophene part of the ligand. All of the protons in the $\eta^{4}-3-\mathrm{MeBT}$ ligand in 5 are upfield of those ($\delta 7.3-8.4 \mathrm{ppm}$) in $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{6}-3-\mathrm{MeBT}\right)^{2+}$ [10]. The benzo[b]thiophene ring is probably bent at C 4 and C 7 , so that the thiophene ring does not lie in the plane defined by $\mathrm{C} 4-\mathrm{C} 7$. Such a bending is observed in the η^{4}-naphthalene complex ($5-8-\eta^{4}-1,4$-dimethylnaphthalene) $\mathrm{Fe}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{3}[20]$. The upfield shift of the protons on the coordinated carbons in 5 is characteristic of other η^{4}-arene complexes such as the ironnaphthalene complex above [20], $\mathrm{Cr}\left(\eta^{4}-\right.$ naphthalene) $(\mathrm{CO})_{3}^{2-}[21]$ and (arene) $\mathrm{Ru}\left(\eta^{4}\right.$-naphthalene) $[22,23]$.

5
In related systems, $\mathrm{Cp}^{\star} \operatorname{Ir}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right)^{2+}$ has been reduced electrochemically and chemically $[24,25]$ to $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{Me}_{6}\right)$. The electrochemical reduction of $\mathrm{Cp}{ }^{\star} \operatorname{Ir}\left(\eta^{6}-\mathrm{BT}\right)^{2+}$ was previously reported [7] to be quasi-reversible.

The two-electron reduction of $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}$ (3) gives (eq. 7) in 20% yield $\mathrm{Cp}{ }^{\star} \operatorname{Ir}\left(\eta^{4}-\mathrm{DBT}\right)$ (6), an analog of 5 . The observation in the ${ }^{1} \mathrm{H}$ NMR spectrum
(Table 1) of 6 that four of the proton signals are substantially upfield of the other four indicates that the Ir coordinates through four carbons of one arene ring (eq. 7). As for 5 , the outermost protons H 6 and H 9 are further upfield than H 7 and H 8 . The ${ }^{1} \mathrm{H}$ NMR assignments in Table 1 were made by comparison with those in $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}$ (3) [8] and free DBT [27*]. In (η^{4}-anthracene) $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{2}$ (SnPh_{3}) [26] as well as in the η^{4}-naphthalene complexes cited above, the arene ring is not planar. Thus, the DBT ring in 6 is likely to be bent at C6 and C9, as shown in eq. 7.

The other product $\mathrm{CpCo}\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5} \cdot \mathrm{C}_{6} \mathrm{H}_{5}\right)$ (7) was characterized by a comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with that [13] of the compound prepared by the reaction of $\mathrm{Cp}_{2} \mathrm{Co}^{+} \mathrm{X}^{-}$with PhLi according to a literature procedure [14]; also the melting point of 7 is the same as that previously reported [14] for this compound. The route to the formation of 7 in reaction 7 is not known; however, it presumably involves transfer of a phenyl group from DBT.

Reaction of $C p^{*} I r\left(\eta^{4}-3-M e B T \cdot 2 H\right)(2 c)$ with $\left(\mathrm{Ph}_{3} \mathrm{C}\right) B F_{4}$. One hydride $\left(\mathrm{H}^{-}\right)$is abstracted from 2 c when it reacts with equimolar $\mathrm{Ph}_{3} \mathrm{C}^{+}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Within 15 $\mathrm{min}, \mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{5}-3-\mathrm{MeBT} \cdot \mathrm{H}\right)^{+}(8)$ is produced in 83% isolated yield (eq. 8) as the only 3 -MeBT-containing product. Complex 8 was previously prepared [7] as one in a mixture of four isomers resulting from hydride addition to the $\mathrm{C} 4, \mathrm{C5}, \mathrm{C} 6$, or C 7 atoms of the coordinated arene ring of $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{6}-3-\mathrm{MeBT}\right)^{2+}$ (1c) (see eq. 2). In reaction 8 , only the A isomer (labelled 8 here) is formed; its identity was established by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with that of \mathbf{A} [7]. Thus, the H^{-}abstracted from 2 c in eq. 8 is H 6 and not H 7 . It is interesting that selective H^{-} abstraction from $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{5}-\mathrm{BT} \cdot \mathrm{H}\right)^{+}$by $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ removes $\mathrm{H} 4, \mathrm{H} 5$, and H 6 in preference to H 7 . Thus, the same selectivity is observed in reaction 8.

When 2c reacts with 2 equivalents of $\left(\mathrm{Ph}_{3} \mathrm{C}\right) \mathrm{BF}_{4}$ under the same conditions, two hydrides are removed from the cyclohexadiene portion of the $\eta^{4}-3-\mathrm{MeBT} \cdot 2 \mathrm{H}$ ligand to give $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{6}-3-\mathrm{MeBT}\right)^{2+}$ (1c). Thus, the hydride addition reaction (eq. 4) is reversed by $\mathrm{Ph}_{3} \mathrm{C}^{+}$.

Reaction of $C p^{*} I r\left(\eta^{4}-D B T \cdot 2 H\right)(4)$ with ($\mathrm{Ph}_{3} C$) BF 4_{4}. As for the reactions of 2 c with $\left(\mathrm{Ph}_{3} \mathrm{C}\right) \mathrm{BF}_{4}, 4$ reacts (eq. 9) with one equivalent of $\left(\mathrm{Ph}_{3} \mathrm{C}\right) \mathrm{BF}_{4}$ to give
predominantly the monohydride abstraction product 9 (55% yield) but also some $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}$ (3) (30% yield). The structure of 9 is assigned based on the similarity of the ${ }^{1} \mathrm{H}$ NMR spectrum to that of isomer A of $\mathrm{CpRu}\left(\eta^{5}-\mathrm{DBT} \cdot \mathrm{H}\right)$ [8] (eq. 3). As in reaction 8, only one isomer of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{5}-\mathrm{DBT} \cdot \mathrm{H}\right)^{+}(\mathbf{1 0})$ is produced, whereas two isomers of $\mathrm{CpRu}\left(\eta^{5}-\mathrm{DBT} \cdot \mathrm{H}\right)$ were formed in the reaction of $\mathrm{CpRu}\left(\eta^{6}-\mathrm{DBT}\right)^{+}$with $\mathrm{BEt}_{3} \mathrm{H}^{-}$(eq. 3). The reaction of 4 with two equivalents of $\left(\mathrm{Ph}_{3} \mathrm{C}\right) \mathrm{BF}_{4}$ removes both hydrides to give $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}(3)$ in 90% yield.

Conclusion

The additions (eqs. 4 and 5) of two hydrides to the arene rings of $\mathrm{Cp}{ }^{\star} \operatorname{Ir}\left(\eta^{6}\right.$ $\mathrm{BTs})^{2+}$, 1a-d, and $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{6}-\mathrm{DBT}\right)^{2+}(3)$ demonstrate that the $\mathrm{Cp}^{*} \mathrm{Ir}^{2+}$ group strongly activates [17] the arene to nucleophilic attack. The products $2 \mathbf{2 a - d}$ and 4 are cyclohexadiene complexes in which the double bonds are conjugated. There is no evidence for migration of the $\mathrm{Cp}^{*} \mathrm{Ir}$ group to the thiophene part of the ligand. The two-electron reductions (eqs. 6 and 7) of 1c and 3 give air-sensitive η^{4}-arene complexes, which are also thermally rather unstable. In these reductions, there is also no migration of the $\mathrm{Cp}{ }^{*}$ Ir unit to the thiophene moiety. Thus, in these studies, in contrast to those [28] involving reduction of $\mathrm{Cp}^{\star} \operatorname{Ir}\left(\eta^{5} \text {-thiophene }\right)^{2+}$, there is no evidence for $\mathrm{C}-\mathrm{S}$ cleavage of the thiophene ring. The reactivity of the ligand is typical of that in other $\mathrm{Cp}^{\star} \operatorname{Ir}\left(\eta^{6} \text {-arene }\right)^{2+}$ complexes.

Acknowledgments

This research was supported by the Office of Basic Energy Sciences, Chemical and Materials Sciences Divisions of the US Department of Energy under contract W-7405-Eng-82 to Iowa State University.

Supplementary material available. Tables of additional angles, thermal parameters, least-squares planes, and molecular mechanics calculations for 2c and 4 (16 pages), as well as structure factors (43 pages) for 2 c and 4 , are available from R.J. Angelici.

References and notes

[^3]9 J.W. Kang, K. Moseley and P.M. Maitlis, J. Am. Chem. Soc., 91 (1969) 5970.
10 S.C. Huckett, L.L. Miller, R.A. Jacobson and R.J. Angelici, Organometallics, 7 (1988) 686.
11 J.E. Ellis and E.A. Flom, J. Organomet. Chem., 99 (1975) 263.
12 The $\mathrm{Cp}_{2} \mathrm{Co}$ was prepared by $\mathrm{NaK}_{2.8}$ alloy reduction of $\left(\mathrm{Cp}_{2} \mathrm{Co}\right) \mathrm{PF}_{6}$ dissolved in THF at room temperature for $20-30 \mathrm{~min}$ with stirring. The pink-purple solution of $\mathrm{Cp}_{2} \mathrm{Co}$ was filtered and directly used for reaction.
13 (a) A.V. Malkov, P.V. Petrovskii, E.I. Fedin and E.V. Leonova, Izv. Akad. Nauk SSSR, Ser. Khim., (6) (1987) 1270; (b) H. Lehmkuhl and H.F. Nehl, Chem. Ber., 117 (1984) 3443.

14 E.O. Fischer and G.E. Herberich, Chem. Ber., 94 (1961) 1517.
15 (a) texsan-texray Structural Analysis Package, Molecular Structure Corporation, 1985; (b) C.K. Johnson, ortep-II. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
16 S.L. Grundy A.J. Smith, H. Adams and P.M. Maitlis, J. Chem. Soc., Dalton Trans., (1984) 1747.
17 R.C. Bush and R.J. Angelici, J. Am. Chem. Soc., 108 (1986) 2735.
18 C.V. Greco and V.G. Grosso, J. Org. Chem., 38 (1973) 146.
19 (a) C. Krüger and Y.-N. Tsay, J. Organomet. Chem., 33(1971) 59; (b) A.J. Pearson and P.R. Raithby, J. Chem. Soc., Dalton Trans., (1981) 884.

20 H. Schäufele, D. Hu, H. Pritzkow and U. Zenneck, Organometallics, 8 (1989) 396 and references therein.
21 V.S. Leong and N.J. Cooper, Organometallics, 7 (1988) 2058.
22 (a) G.P. Zol'nikova, A.S. Peregudov, Yu.F. Oprunenko, G.M. Babakhina, I.I. Kritskaya and D.N. Kravtsov, Metalloorg. Khim., 1 (1988) 79; (b) A.S. Batsanov, Yu.T. Struchkov, G.P. Zol'nikova, I.I. Kritskaya and D.N. Kravtsov, Metalloorg. Khim., 1 (1988) 326.
23 J.W. Hull, Jr. and W.L. Gladfelter, Organometallics, 3 (1984) 605.
24 W.J. Bowyer and W.E. Geiger, J. Am. Chem. Soc., 107 (1985) 5657.
25 W.J. Bowyer, J.W. Merkert, W.E. Geiger and A.L. Rheingold, Organometallics 8 (1989) 191.
26 H.-F. Klein, K. Ellrich, S. Lamac, G. Lull, L. Zsolnai and G. Huttner, Z. Naturforsch., Teil B, 40 (1985) 1377.
$27{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) : $\delta 8.15$ ($\mathrm{m}, \mathrm{H} 1, \mathrm{H} 9$), $7.84(\mathrm{~m}, \mathrm{H} 4, \mathrm{H} 6) 7.45(\mathrm{~m}, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 7, \mathrm{H} 8)$; see ref. 8.
28 J. Chen, L.M. Daniels and R.J. Angelici, J. Am. Chem. Soc., 112 (1990) 199.

[^0]: Correspondence to: Dr. R.J. Angelici, Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA.

 * Dedicated to Professor Wolfgang Beck on the occasion of his 60th birthday and in recognition of his many and diverse research contributions in organometallic chemistry.

[^1]: * Reference number with asterisk indicates a note in the list of references.

[^2]: ${ }^{a}$ Estimated standard deviations in the least significant figure are given in parentheses.

[^3]: 1 W. Beck, J. Organomet. Chem., 383 (1990) 143.
 2 J. Breimair, M. Steimann, B. Wagner and W. Beck, Chem. Ber., 123 (1990) 7.
 3 W. Beck, Polyhedron, 7 (1988) 2255.
 4 W. Beck, B. Niemer, J. Breimair and J. Heidrick, J. Organomet. Chem., 372 (1989) 79.
 5 R.J. Angelici, Acc. Chem. Res., 21 (1988) 387.
 6 J. Chen, L.M. Daniels and R.J. Angelici, J. Am. Chem. Soc., 113 (1991) 2544.
 7 S.C. Huckett and R.J. Angelici, Organometallics, 7 (1988) 1491.
 8 C.-M. Wang and R.J. Angelici, Organometallics, 9 (1990) 1772.

